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Abstract

The three-dimensional free vibration of generalized super elliptical plates is analysed, based on the exact, small-strain
and linear elasticity theory. The Ritz method is applied to derive the frequency equation. The triplicate Chebyshev
polynomial series form the backbones of the admissible functions, as modified by a characteristic boundary function to
ensure the satisfaction of geometric boundary conditions of the plate. Utilizing the symmetry of the plate under
consideration, eight distinct vibration modes can be classified and individually solved while maintaining the same level
of accuracy. The accuracy of the present method has been examined by the convergence and comparison studies. The
effect of geometric parameters on vibration behaviour of the generalized super elliptical plates with free and fixed
perimeters have been studied for different powers, thickness ratios and aspect ratios.
© 2004 Published by Elsevier Ltd.

1. Introduction

The analysis of vibration characteristics of plates with various shapes has attracted the interests from a
lot of researchers because of their applications in various branches of engineering. In the Cartesian
coordinate system, the perimeter F of a generalized super elliptical plate, as shown in Fig. 1, is defined by

2)C 2ny 2_)/ 2n,
Flx,y)=| — =+ B -1=0, n,n,=1,23,... (1)

a

where ¢ and b are the maximum dimensions of the plate in the x and y directions, respectively. The above
equation can describe a type of common plates by giving different values to the integer powers n, and n,,
and the aspect ratio a/b. For example, setting n, = n, =1 and a/b =1 gives a circular plate, while pre-
scribing n, = n, =1 and a/b # 1 represents an elliptical plate. It is obvious that the higher values of n,
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Fig. 1. Geometry and dimensions of a generalized super elliptical plate.

and/or n, correspond to a smaller corner radius. Therefore, the perimeter of the plate approaches a rect-
angular one with increase in the powers. In a sense, the present work on super elliptical plates provides a
unified treatment for a wide range of plates ranging from circular plates, elliptical plates to rectangular
plates by setting suitable indices.

Some investigations have been carried out on vibration of super elliptical plates due to their importance
in engineering applications. Sato (1971) used the analytical method and Narita (1985) used the Ritz method
to study isotropic and orthotropic elliptical plates based on the classical thin plate theory, respectively.
Wang et al. (1994) studied the vibration and buckling of super elliptical thin plates, while DeCapua and Sun
(1972) studied the eigenfrequencies of orthotropic super elliptical thin plates using the 2-D simple algebraic
polynomials as the admissible functions in the Ritz method. Irie et al. (1983) combined the conformal
mapping technique with Ritz method to study the vibration of square membrane and thin plate with
rounded corners. Rajalingham et al. (1993) studied the free vibration of elliptical thin plates by using the
orthogonal polynomials and trigonometric functions as the admissible functions in a modified polar
coordinate system. Liew et al. (1998b) and Chen et al. (1999) studied the free vibration of isotropic and
symmetric laminated thick super elliptical plates by using the higher-order shear deformation plate theory
in the Ritz method, respectively. Moreover, the free vibration of isotropic and laminated, thin and thick
perforated plates have been studied by Lim and Liew (1995), Lim et al. (1998) and Chen et al. (2000) using
the classical thin plate theory and the higher-order shear deformation plate theory, respectively.

In the recent two decades, the 3-D vibration analysis of plates based on the exact, small strain and linear
elasticity theory has received increasing attention as such methods are applicable not only to thin plates, but
also to moderately thick and thick plates. Among various numerical methods, the Ritz method shows some
advantages in both the accuracy and the convenience. Simple algebraic polynomials (Leissa and Zhang,
1983; So and Leissa, 1998), generated orthogonal polynomials (Liew et al., 1993; Liew and Yang, 2000) and
Chebyshev polynomials (Zhou et al., 2002; Zhou et al., 2003) were taken as the admissible functions and
have been demonstrated effective. Liew et al. (1995a) studied the 3-D vibration of elliptical bars and re-
cently, Liew and Feng (2001) studied the 3-D vibration of perforated super elliptical plates using the 1-D
and 2-D generated orthogonal polynomials as the admissible functions. Moreover, the 3-D vibration of
plates with various shapes have been analysed by the Ritz method (Leissa and Jacob, 1986; Cheung and
Zhou, 2002; Zhou et al., 2003; Young and Dickinson, 1994, 1995; Liew et al., 1994, 1998a, 1995b).

It is obvious that Eq. (1) describes a more far-reaching type of plates than super elliptical plates. For the
case of n, = n,, the generalized super elliptical plates degenerate into super elliptical plates which have been
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studied by some researchers (Liew et al., 1998b; Chen et al., 1999; Wang et al., 1994; DeCapua and Sun,
1972; Irie et al., 1983). In the present study, the 3-D free vibrations of generalized super elliptical plates are
considered. The triplicate Chebyshev polynomials multiplied by a characteristic boundary function for each
displacement component are taken as the admissible functions. Convergence and comparison studies
demonstrate the accuracy and the correctness of the present method. The effect of the geometric parameters
such as the thickness ratio, aspect ratio and powers on the frequency parameters has been investigated in
detail.

2. Formulation

Consider a generalized super elliptical plate as shown in Fig. 1 with a Cartesian coordinate system
x —y — z. The plate is made of isotropic material and has a uniform thickness 4. The shape of the plate is
controlled by two positive integers n, and n,, and the aspect ratio a/b. It is obvious that no matter what
values #n, and n, are assigned, the plate always stays within a rectangular hexahedral domain with the sides
a, b and h. For the case of a = b, the hexahedral domain has a square planform.

Based on the exact, small strain, and 3-D linear elasticity theory, the elastic strain energy A and the
kinetic energy T of the plate can be written in the volume integral form as

A:ﬁ/_:z/ /:i <—A1+A2+;Az>d2dydx (2)
5L L)+ (5) + (5) feon <3>
where r = (b/2) /1 — (2x/a)™ and

Alz(gxx+syy+szz)2; Ay =&, +s —1—822, Ay =¢ Xy—&—s +8 4)

E is the Young’s modulus, v is the Poisson’s ratio and p is the mass density per unit volume. The strain
components ¢&;(i,j = x,,z) in the Cartesian coordinates for small deformation are given as

_ Ou _0v _Ow
SXX - ax b s}y - ay? 8ZZ - az (5)
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In the free vibration of the plate, its periodic displacement components can be expressed in terms of the
time ¢ as
M(xay727 t) = U(x,y7z)ei(/)t; y(x7y,Z, t) = V(X,y,z)ei“”
W()C,y,Z, t) = W(x7y7z)ei(ut

where U(x,y,z), V(x,y,z) and W(x,y,z) are the displacement amplitude functions, w denotes the natural

frequency of the plate and i = v—1.
For simplicity and convenience in mathematical formulation, the following non-dimensional parameters
are introduced

E=2x/a; n=2p/b; (=2z/h (7)

(6)
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The maximum energy functional IT of the plate is defined as
1= Amax - Tmax (8)

where

Eh Lopropl M
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A=al/b; y=h/b
In the present analysis, each of the displacement amplitude functions U(&,n,{), V(&,n,() and W (&, n,() is
taken, respectively, in the form of triplicate series of Chebyshev polynomials multiplied by a characteristic

boundary function which ensures that the displacement component satisfies the essential geometric
boundary conditions of the plate, i.e.

UEn ) =REDS S S AuP@PMAL)

PERD = EENS S S B @R )P () (1)
WERD =REn S S S CubOR R

where A;y, By, and C,, are the unknown coefficients. The 1-D sth Chebyshev polynomial P(y)
(s=1,2,3,...;7 =& n,{) can be written in terms of cosine functions as follows:

P.(y) = cos|(s — 1)arccos(y)]; (s=1,2,3,...) (12)

Note that F,(&, 1), F,(¢,n) and F,(&,n) are the characteristic boundary functions, respectively, corre-
sponding to the displacements u, v and w.

It is obvious that the three duplicate Chebyshev polynomial series P;(E)P;(n)Pi(C) (i, j,k,=1,2,3,...)
constitute a complete and orthogonal set in the cubic domain with two corner-point coordinates (1,1, 1)
and (—1,—1,—1). Substituting Eq. (11) into Eq. (9) and minimizing the functional IT with respect to the
coefficients of the admissible functions, i.e.

or oI oIl
= = = i J =1,2,3,... 1
aAijk ’ aBlmn 0’ acpqr 0 (l’]7k’ l,m,n,p,q,r ’ 737 ) ( 3)
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leads to the following governing eigenvalue equation in matrix form:

K (K] [Ki] Mu] 0 0 {4} {0}
Kol Kl [Kal | =22 0 M) 0 {B} p =4 {0} (14)
[Kl" K] [Kin] 0 0 [M] {c} {0}

in which Q = wa+/p/E, [K;;| and [M;;](i,j = u,v,w) are the stiffness sub-matrices and the diagonal mass sub-
matrices, respectively. The column vectors {A}, {B} and {C} contain unknown coefficients expressed in the
following forms

A B Ci
A B Cinn
Anig By Cur
Aoy By Cia
{4} =4 : }, {B}= R o : (15)
Ak Bioy Cior
Ak Biun Cior
Ak Ay Cror

where I, J, K, L, M, N, P, O and R are the truncation orders. The elements of the stiffness sub-matrices [K]
and mass sub-matrices [M;] (i,j = u,v, w) are given by

I—v 1,1,0,0 770,0 0,0,1,1 1 0,0,0,0 71,1
[Kuu} = EDMUMTI Hukuk + 2 ijulj Huku + ')) DuijuTj Hukufc ’

v 1,0,0,1 70,0 DOL10 700
[KMU] - j‘( 1 — 2vDuljvlmHukun ut]leHukun
1 ,0,0,0 770,1 1 0,1,0,0 771,0
- < 1 —2v mjwquukwr + EDm/wquukwr>
}2 1 - 001 1 00 + 1 DO,O.O,OHI,I +1D171>0»0H00
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s
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Table 1

The characteristic boundary functions (CBF)
CBF Fixed Free S-S
F.(&n) F(&n) 1 1
F(&n) F(&n) 1 1
E,(&n) F(&n) 1 F(¢n)

#Note: S-S means soft simply-supported boundary conditions.

Table 2
The Chebyshev polynomials for different mode categories
Geometric Symmetric modes Antisymmetric modes
symmetry U % W U % W
x direction i=2,46,... 1=1,3,5,... p=1,3,5,. i=1,3,5,... 1=2,4,6,... p=2,46,...
y direction j=13,5... m=246,... qg=1,35, j=2,4,6,... m=1,375,... q=2,4,6,...
z direction k=1,35... n=1305.. r=2406, k=2,4,6,... n=2406,... r=1305,...
in which
d’ d df
0= [ [ { i e oteon] g5 ot | Jacan
o [T EPQ ¢
H(S;S; - dts d d¢,
' -1 ' (17)

Joo0(E,m) = F5(E,m)Py(E)Po(n),

s,5,1,1=0,1, 90, 0=u,v,w, o,6=1/I1,p,ilp,

biagh)

07D:j7maqajarha5a g’§:k7n7r’];77[77

For the common boundary conditions, the characteristic boundary functions (&, 1), F,(¢,n) and F, (&, 1)
are given in Table 1.

Considering the symmetry of the plates, eight distinct categories of vibration modes can be classified and
each mode can be individually solved. This will greatly reduce the computational cost while maintaining the
same level of accuracy. Using “A’’ to denote antisymmetric modes and ““S”” for symmetric modes, the eight
categories can be written as AAA, AAS, ASA, ASS, SAA, SAS, SSA and SSS, where the three consecutive
letters stand for the vibration categories in the x, y and z directions, respectively. The Chebyshev polynomial
series in different directions are given in Table 2.

A non-trivial solution is obtained by setting the determinant of the coefficient matrix of Eq. (14) to zero.
The roots of the determinant are the squares of the eigenvalues or non-dimensional eigenfrequencies. Ei-
genfunctions, i.e. mode shapes, are determined by back-substitution of the eigenvalues, one-by-one, in the
usual manner. All computations are performed in double precision (16 significant figures) on a micro-
computer. The integrals in Eq. (17) are numerically evaluated by the piecewise Gaussian quadrature with
24 points.
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3. Convergence and comparison studies

In the Ritz method, it is very important to check its convergence and numerical robustness. The upper
bound estimates of frequencies could be theoretically improved by continuously increasing the number of
terms of admissible functions. However, a limit to the number of terms used in the computation always

Table 3
Convergence of the first eight frequency parameters of a fixed generalized super elliptical plate with powers n, = 1, n, = 2 and thickness
ratio h/b = 0.01

I xJxK .Ql QZ .Q3 .Q4 QS Qﬁ .Q7 Qg
AAA mode

6X6x2 0.3651 0.7651 0.8727 1.249 1.500 1.618 1.853 2.207
TxTx2 0.3648 0.7645 0.8720 1.247 1.493 1.600 1.845 2.169
8x8x2 0.3647 0.7640 0.8716 1.247 1.492 1.598 1.844 2.162
8x8x3 0.3647 0.7640 0.8716 1.247 1.492 1.598 1.844 2.162
AAS mode

6x6x1 4.549 5.921 8.256 8.360 9.532 11.66 11.93 12.25
TxTx1 4.549 5.920 8.256 8.360 9.529 11.66 11.92 12.24
8x8x1 4.549 5918 8.256 8.360 9.527 11.66 11.92 12.24
8x8x2 4.549 5.918 8.256 8.360 9.527 11.66 11.92 12.24
ASA mode

6X6x2 0.2335 0.5615 0.6631 0.9875 1.202 1.325 1.543 1.814
TxTx2 0.2333 0.5612 0.6626 0.9861 1.193 1.320 1.536 1.796
8x8x2 0.2332 0.5608 0.6622 0.9856 1.193 1.319 1.535 1.792
8x8x3 0.2332 0.5608 0.6622 0.9856 1.193 1.319 1.535 1.792
ASS mode

6x6x1 3.893 6.389 7.942 9.735 10.29 10.54 11.19 13.01
TxTx1 3.892 6.389 7.939 9.733 10.29 10.54 11.19 13.01
8x8x1 3.891 6.388 7.938 9.733 10.29 10.54 11.18 13.01
8x8x2 3.891 6.388 7.938 9.733 10.29 10.54 11.18 13.01
SAA mode

6X6X%2 0.2369 0.5468 0.6810 0.9955 1.153 1.378 1.537 1.862
TxTx2 0.2368 0.5463 0.6803 0.9943 1.151 1.359 1.532 1.830
8x8x2 0.2366 0.5460 0.6799 0.9937 1.150 1.357 1.531 1.826
8x8x3 0.2366 0.5460 0.6799 0.9937 1.150 1.357 1.531 1.826
SAS mode

6x6x1 3.925 6.342 7.859 9.758 10.21 10.72 11.13 13.20
TxTx1 3.924 6.342 7.857 9.757 10.21 10.72 11.13 13.19
8x8x1 3.923 6.342 7.855 9.756 10.21 10.72 11.12 13.19
8x8x2 3.923 6.342 7.855 9.756 10.21 10.72 11.12 13.19
SSA mode

6X6x2 0.1139 0.4044 0.4361 0.7534 0.9616 1.000 1.254 1.473
TxTx2 0.1138 0.4040 0.4358 0.7527 0.9591 0.9920 1.250 1.462
8x8x2 0.1137 0.4037 0.4355 0.7523 0.9585 0.9914 1.249 1.460
8x8x3 0.1137 0.4037 0.4355 0.7523 0.9585 0.9914 1.249 1.460
SSS mode

6x6x1 6.245 7.603 8.020 9.569 11.36 11.90 12.47 13.74
TxTx1 6.242 7.600 8.019 9.566 11.36 11.90 12.46 13.74
8x8x1 6.241 7.598 8.019 9.564 11.36 11.89 12.46 13.73

Ex8x2 6.240 7.598 8.019 9.563 11.36 11.89 12.45 13.73
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Table 4
Convergence of the first eight frequency parameters of a fixed generalized super elliptical plate with powers n, = 1, n, = 2 and thickness
ratio /b =0.2

I xJxK Ql .Qz Q3 Q4 95 Qs Q7 .Qg
AAA mode

Sx5%3 4.181 6.999 7.664 9.713 10.75 10.90 11.26 11.75
6x6x3 4.181 6.998 7.661 9.704 10.74 10.84 11.17 11.69
TxTx3 4.180 6.997 7.660 9.703 10.74 10.84 11.17 11.68
TxTx4 4.179 6.995 7.658 9.700 10.74 10.84 11.16 11.68
AAS mode

5X5%2 4.549 5.942 8.253 8.351 9.534 11.54 11.77 12.21
6x6x2 4.549 5.941 8.252 8.350 9.533 11.53 11.75 12.17
TXTx2 4.549 5.941 8.252 8.350 9.532 11.53 11.75 12.17
TxTx3 4.549 5.938 8.252 8.349 9.528 11.53 11.74 12.17
ASA mode

5x5x%3 2.987 5.655 6.336 8.329 9.445 9.985 10.63 11.13
6x6x3 2.986 5.654 6.335 8.323 9.388 9.942 10.62 11.08
TxTx3 2.986 5.654 6.334 8.323 9.383 9.940 10.62 11.08
TxTx4 2.985 5.652 6.332 8.321 9.381 9.938 10.62 11.08
ASS mode

5%x5%2 3913 6.387 7.952 9.675 10.20 10.41 11.13 12.96
6X6x2 3.913 6.387 7.951 9.673 10.18 10.38 11.12 12.91
TXTx2 3.913 6.387 7.951 9.673 10.18 10.38 11.12 12.90
TxTx3 3.911 6.387 7.948 9.671 10.18 10.38 11.11 12.90
SAA mode

5x5x%x3 3.021 5.567 6.446 8.359 9.205 10.23 10.70 11.10
6x6x3 3.020 5.567 6.442 8.355 9.192 10.11 10.66 11.07
Tx7Tx3 3.020 5.566 6.442 8.355 9.191 10.10 10.66 11.07
TxTx4 3.019 5.565 6.440 8.353 9.189 10.10 10.66 11.06
SAS mode

5%x5%2 3.946 6.340 7.870 9.710 10.18 10.45 11.09 13.12
6X6x2 3.945 6.340 7.869 9.707 10.17 10.45 11.08 13.05
TxTx2 3.945 6.340 7.869 9.706 10.17 10.45 11.08 13.04
TxTx3 3.944 6.340 7.865 9.705 10.17 10.44 11.07 13.03
SSA mode

5x5x%x3 1.712 4.445 4.746 6.946 8.118 8.352 9.734 10.79
6x6x3 1.711 4.444 4.744 6.944 8.103 8.299 9.714 10.72
TxTx3 1.711 4.444 4.744 6.944 8.103 8.296 9.713 10.71
TxTx4 1.711 4.443 4.743 6.942 8.100 8.293 9.710 10.71
SSS mode

5x5%2 6.263 7.539 8.004 9.565 11.33 11.76 12.40 12.85
6Xx6x2 6.263 7.538 8.003 9.563 11.32 11.73 12.39 12.83
TXTx2 6.262 7.538 8.003 9.562 11.32 11.72 12.39 12.82
TxTx3 6.259 7.534 8.002 9.558 11.31 11.72 12.38 12.81

exists because of the limited numerical accuracy of computers, which greatly depends on the choice of
global admissible functions. In the 3-D analysis, especially when the triplicate series has to be used,
numerical instability may occur before the required accuracy of results is reached.

A generalized super elliptical plate with powers n, = 1 and n, = 2 enclosed within a square planform
(a/b=1) is taken as an example to show the convergence of the present method. The plate has a fixed
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perimeter and two different thickness ratios (#/b = 0.01 and /#/b = 0.2) are considered. It is obvious that
h/b = 0.01 corresponds to a thin plate while 2/b = 0.2 corresponds to a moderately thick plate. Tables 3
and 4 demonstrate the convergence of the first eight frequency parameters of each mode category for the
two thickness ratios, respectively. For the plate with thickness ratio /b = 0.01, 6-8 terms in the x and y
directions are examined. However, only 2-3 terms in the z direction for the antisymmetric vibration and 1-2
terms for the symmetric vibration are examined. For the plate with thickness ratio #/b = 0.2, 5-7 terms in
the x and y directions are examined. However, only 3-4 terms in the z direction for the antisymmetric
vibration and 2-3 terms for the symmetric vibration are examined. It is seen that with increasing terms of
Chebyshev polynomials used, the frequency parameters monotonically decrease and excellent convergence

Table 5
Comparison of the first two frequency parameters Q = wa+/p/E of fixed super elliptical plates with different powers and thickness
ratios

h/b ne =n, Mode sequence number
AA-1 AA-2 AS(SA)-1 AS(SA)-2 SS-1 SS-2
0.01 1 0.4216 0.8400 0.2574 0.6163 0.1238 0.4220
(0.4207) (0.8378) (0.2568) (0.6148) (0.1235) (0.4208)
2 0.3407 0.7392 0.2261 0.5214 0.1102 0.3990
(0.3401) (0.7379) (0.2258) (0.5202) (0.1100) (0.3981)
4 0.3282 0.7304 0.2223 0.5007 0.1091 0.3977
(0.3277) (0.7289) (0.2219) (0.4996) (0.1088) (0.3969)
10 0.3271 0.7298 0.2202 0.4982 0.1090 0.3976
(0.3265) (0.7285) (0.2216) (0.4973) (0.1088) (0.3968)
00 0.3271 0.7300 0.2221 0.4982 0.1090 0.3978
(0.3265) (0.7284) (0.2216) (0.4972) (0.1088) (0.3968)
[0.3271] [0.7300] [0.2221] [0.4982] [0.1090] [0.3977]
0.1 1 3.311 4.753* 2.173 4.119* 1.128 3.312
(3.294) (4.753) (2.162) (4.103) (1.122) (3.295)
2 2.773 4.473* 1.934 3.821* 1.007 3.146
(2.759) (4.473) (1.925) (3.808) (1.001) (3.132)
4 2.671 4.443* 1.898 3.754* 0.9927 3.134
(2.659) (4.442) (1.889) (3.742) (0.9876) (3.120)
10 2.657 4.441* 1.894 3.740* 0.9911 3.133
(2.644) (4.440) (1.884) (3.728) (0.9861) (3.118)
[ 2.657 4.441* 1.894 3.739* 0.9913 3.134
(2.645) (4.440) (1.885) (3.727) (0.9864) (3.120)
[2.659] [4.441] [1.895] [3.740] [0.9920] [3.135]
0.2 1 4.599 4.753* 3.212 4.129* 1.839 4.599
(4.616) (4.753) (3.212) (4.103) (1.830) (4.616)
2 3.982 4.474* 2.910 3.830* 1.658 4.392
(3.986) (4.473) (2.909) (3.808) (1.651) (4.412)
4 3.854 4.444* 2.857 3.748%* 1.631 4.374
(3.859) (4.442) (2.858) (3.742) (1.625) (4.470)
10 3.834 4.442% 2.850 3.748* 1.628 4.434
(3.839) (4.440) (2.850) (3.728) (1.622) (4.393)
) 3.833 4.442% 2.850 3.747* 1.628 4.374
(3.840) (4.440) (2.851) (3.727) (1.622) (4.395)
[3.834] [4.442] [2.851] [3.747] [1.628] [4.375]

Notes: Results in parentheses are from Liew et al. (1998b) using the higher-order shear deformation plate theory. Results in square
brackets are from Liew et al. (1993) using the exact 3-D elasticity theory. The asterisk denotes symmetric modes in the thickness
direction.
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Table 6
Comparison of the first two frequency parameters Q = wa/p/E of free super elliptical plates with different powers and thickness ratios
h/b ny =n, Mode sequence number
AA-1 AA-2 AS(SA)-1 AS(SA)-2 SS-1 SS-2
0.01 1 0.06479 0.2635 0.1502 0.2474 0.06478 0.1089
(0.06477) (0.2634) (0.1502) (0.2473) (0.06476) (0.1089)
2 0.04877 0.2209 0.1226 0.2060 0.06029 0.08758
(0.04876) (0.2209) (0.1226) (0.2060) (0.06027) (0.08758)
4 0.04324 0.2107 0.1112 0.1916 0.05940 0.07829
(0.04322) (0.2106) (0.1112) (0.1915) (0.05940) (0.07827)
10 0.04115 0.2090 0.1063 0.1861 0.05928 0.07441
(0.04113) (0.2089) (0.1063) (0.1861) (0.05928) (0.07439)
00 0.04062 0.2088 0.1050 0.1846 0.05928 0.07341
(0.04063) (0.2089) (0.1050) (0.1847) (0.05928) (0.07341)
0.1 1 0.6196 2.286 1.372 2.186 0.6196 1.031
(0.6193) (2.281) (1.370) (2.178) (0.6192) (1.030)
2 0.4641 1.940 1.129 1.857 0.5827 0.8378
(0.4640) (1.937) (1.127) (1.852) (0.5823) (0.8369)
4 0.4101 1.855 1.024 1.739 0.5749 0.7521
(0.4100) (1.851) (1.023) (1.734) (0.5746) (0.7513)
10 0.3899 1.840 0.9791 1.692 0.5737 0.7159
(0.3898) (1.837) (0.9783) (1.687) (0.5734) (0.7151)
00 0.3850 1.839 0.9670 1.679 0.5736 0.7064
(0.3850) (1.836) (0.9663) (1.675) (0.5733) (0.7059)
[0.3851] [1.839] [0.9673] [1.679] [0.5736] [0.7065]
0.2 1 1.126 2.909* 2.307 3.448 1.126 1.816
(1.125) (2.909) (2.301) (3.392) (1.124) (1.810)
{1.126} {2.909} {2.307} {3.448} {1.126} {1.816}
2 0.8500 2.589%* 1.932 3.008 1.072 1.504
(0.8497) (2.589) (1.927) (2.951) (1.070) (1.500)
4 0.7534 2.481* 1.765 2.843 1.058 1.363
(0.7531) (2.481) (1.762) (2.716) (1.057) (1.359)
10 0.7173 2.441%* 1.693 2.775 1.056 1.302
(0.7171) (2.441) (1.690) (2.616) (1.054) (1.299)
00 0.7087 2.433%* 1.673 2.589 1.055 1.286
(0.7087) (2.433) (1.671) (2.591) (1.053) (1.283)
[0.7087] [2.433] [1.673] [2.589] [1.055] [1.286]

Notes: Results in parentheses are from Liew et al. (1998b) using the higher-order shear deformation plate theory. Results in square
brackets are from Liew et al. (1993) using the exact 3-D elasticity theory. Results in braces are from Zhou et al. (2003) using the exact
3-D elasticity theory. The asterisk denotes symmetric modes in the thickness direction.

has been achieved for all cases. It is shown that for a given accuracy, more terms of Chebyshev polynomials
in the x and y directions than those in the z direction are needed, especially for thin plates. However, with
increasing plate thickness, more terms of Chebyshev polynomials in the z direction should be used, with a
decrease of terms needed in the x and y directions.

Results of the comparison studies are given in Tables 5 and 6 for super elliptical plates enclosed within
square planforms with free and fixed boundaries, respectively. Three different thickness ratios (h/b = 0.01,
0.1, 0.3) and five groups of powers (n, = n, = 1,2,4, 10, 00) have been examined. The solutions given by
Liew et al. (1998b) from the higher-order shear deformation theory and the 3-D solutions for square plates
given by Liew et al. (1993) and the 3-D solutions for circular plates given by Zhou et al. (2003) are used for
comparison. It is seen that very good agreement has been observed for all cases and the maximum error
between the present 3-D solutions and the 2-D higher-order theory is lower than 1%. From the tables, one
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can find that in most cases, the present 3-D solutions are higher than the solutions of the 2-D higher-order
plate theory.

4. Parametric study

In this section, the effects of geometric parameters such as the thickness ratio and the aspect ratio on
the frequency parameters of plates are investigated. In Tables 7-9, the first six frequency parameters of
each mode category are given for free generalized super elliptical plates with powers n, = 1 and n, = 2.
Three different aspect ratios (a/b = 0.5, 1.0, 2.0) and four different thickness ratios (/b = 0.01, 0.1, 0.2,
0.3) have been considered. It is seen that in all cases, the lowest frequency parameters are always
provided by the SSA mode. In Figs. 2-5, the first four antisymmetric modes and the first three sym-
metric modes in the thickness direction for different mode categories of fixed generalized super elliptical

Table 7
The first six frequency parameters Q = wa+/p/E of each mode categories for free generalized super elliptical plates with powers n, = 1,
n, = 2 and aspect ratio a/b = 0.5

h/b Modes .Q] Qz Q} .Q4 Qs Qs
0.01 AAA 0.05298 0.1970 0.4181 0.4866 0.6994 0.7775
AAS 1.955 2.709 3.845 4.717 5.639 5.910
ASA 0.1158 0.2989 0.4006 0.5513 0.6116 0.8673
ASS 1.232 2.858 3.765 4.792 5.555 5.956
SAA 0.09900 0.2126 0.2966 0.4287 0.5732 0.7536
SAS 2.852 3.570 4.002 4.467 5.170 5.692
SSA 0.03800 0.1508 0.1882 0.3075 0.4256 0.5776
SSS 1.443 1.633 1.835 2.735 2.978 3.297
0.1 AAA 0.4808 1.622 3.017 3.395 4.452 4.781
AAS 1.954 2.708 3.842 4.713 5.632 5.904
ASA 1.011 2.304 2.945 3.733 4.041 5.196
ASS 1.232 2.858 3.762 4.786 5.548 5.936
SAA 0.8894 1.742 2.296 3.085 3.839 4.719
SAS 2.852 3.561 3.994 4.455 5.152 5.686
SSA 0.3643 1.310 1.572 2.362 3.059 3.880
SSS 1.706 3.222 3.526 4.171 4.884 5.628
0.2 AAA 0.8084 2.401 3.999 4.139 4.991 5.249
AAS 1.954 2.704 3.831 4.700 5.584 5.838
ASA 1.601 3.217 3.716 4.601 4.875 5.153
ASS 1.231 2.854 3.754 4.758 5.520 5.794
SAA 1.445 2.560 3.200 4.002 4.838 5.080
SAS 2.851 3.530 3.962 4.407 5.060 5.658
SSA 0.6595 2.041 2.349 3.262 4.084 4.809
SSS 1.704 3.194 3.512 4.126 4.856 5.411
0.3 AAA 0.9925 2.754 3.369 3.711 4.365 4.409
AAS 1.952 2.697 3.785 4.606 4.780 4.854
ASA 1.903 3.261 3.574 3.584 4.289 5.003
ASS 1.230 2.847 3.730 4.473 4.785 5.005
SAA 1.742 2.875 3.351 3.708 4.293 4.761
SAS 2.850 3.442 3.856 4.284 4.554 4913
SSA 0.8959 2.416 2.697 3.473 4.103 4.512

SSS 1.702 3.126 3.478 3.968 4.554 4.785
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Table 8
The first six frequency parameters Q = wa+/p/E of each mode categories for free generalized super elliptical plates with powers n, = 1,
n, = 2 and aspect ratio a/b = 1.0

h/b Modes Ql Qz Q} Q4 95 QG
0.01 AAA 0.05426 0.2347 0.3516 0.5178 0.7570 0.8657
AAS 2.7010 5.412 5.547 5.982 7.867 8.490
ASA 0.1354 0.2161 0.3655 0.5587 0.6416 0.7102
ASS 3.177 4.258 6.415 6.734 7.181 8.133
SAA 0.1306 0.2253 0.3633 0.5344 0.6731 0.7011
SAS 3.102 4.210 6.572 6.866 7.263 7.980
SSA 0.06174 0.09594 0.2363 0.3938 0.4234 0.5223
SSS 2.821 4.043 4.383 5.565 7.812 8.619
0.1 AAA 0.5175 2.054 2.969 4.080 5.600 6.261
AAS 2.701 5.410 5.544 5.982 7.861 8.478
ASA 1.246 1.937 3.040 4.390 4.936 5.292
ASS 3.176 4.257 6.409 6.728 7.160 8.128
SAA 1.197 2.012 3.021 4.228 5.140 5.227
SAS 3.102 4.210 6.566 6.861 7.240 7.974
SSA 0.5951 0.9140 2.072 3.283 3.508 4.110
SSS 2.821 4.037 4.381 5.563 7.806 8.607
0.2 AAA 0.9455 3.260 4.448 5.807 7.458 8.073
AAS 2.701 5.401 5.536 5.982 9.838 8.427
ASA 2.121 3.116 4.551 6.125 6.751 7.153
ASS 3.173 4.256 6.385 6.703 7.087 8.111
SAA 2.035 3.217 4.522 5.943 6.949 7.102
SAS 3.099 4.209 6.545 6.841 7.154 7.954
SSA 1.091 1.628 3.294 4.837 5.135 5.839
SSS 2.821 4.016 4.372 5.559 7.787 8.554
0.3 AAA 1.272 3.897 5.022 6.406 6.642 7.472
AAS 2.700 5.380 5.519 5.980 7.762 8.200
ASA 2.672 3.707 5.263 6.518 6.615 7.182
ASS 3.169 4.255 6.323 6.619 6.932 8.058
SAA 2.565 3.804 5.213 6.395 6.668 7.201
SAS 3.095 4.207 6.484 6.789 6.950 7.902
SSA 2.103 3.958 5.375 5.740 6.503 7.675
SSS 2.821 3.978 4.354 5.551 7.728 8.294

plates with aspect ratio a/b =1 and powers n, =1 and n, =3 have been plotted with respect to the
thickness ratio 4/b. It is shown that the effect of thickness ratio on the frequency parameters of anti-
symmetric modes in the thickness direction is much larger than those of symmetric modes. In the range
of h/b from 0.01 to 0.3, the first three frequency parameters of the SSA modes and the first ones of the
ASA, SAA and AAA modes all monotonically increase with the thickness ratio. The first two frequency
parameters of the AAS, ASS and SAS modes and the first one of the SSS modes are basically insensitive
to the thickness ratio. In general, the frequency parameters of the antisymmetric modes in the thickness
direction increase with the plate thickness. However, the frequency parameters of the symmetric modes
in the thickness direction decrease when the plate thickness increases. Therefore, one can conclude that
for thin plates the frequencies of symmetric modes in the thickness direction are much higher than those
of antisymmetric modes and are all within the higher range of frequencies. However, with the increase in
plate thickness, the frequencies of symmetric modes in the thickness direction gradually decrease and fall
into the lower range of frequencies.
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Table 9
The first six frequency parameters Q = wa+/p/E of each mode categories for free generalized super elliptical plates with powers n, = 1,
n, = 2 and aspect ratio a/b = 2.0

h/b Modes .Q] Qz Q} 94 Qs Qs
0.01 AAA 0.05335 0.1902 0.4092 0.5086 0.7036 0.7706
AAS 3.877 5.266 7.534 9.272 11.36 11.89
ASA 0.09584 0.2222 0.2940 0.4170 0.5787 0.7211
ASS 5.733 7.196 7.970 8.892 10.13 11.38
SAA 0.1127 0.2889 0.4122 0.5495 0.6254 0.8673
SAS 2.378 5.595 7.380 9.545 10.97 12.28
SSA 0.03642 0.1575 0.1831 0.3076 0.4267 0.5540
SSS 3.361 6.546 7.181 8.409 9.743 10.87
0.1 AAA 0.5140 1.778 3.637 4.460 5.902 6.389
AAS 3.877 5.265 7.533 9.270 11.36 11.89
ASA 0.9303 2.079 2.705 3.717 4.984 6.069
ASS 5.733 7.192 7.966 8.887 10.12 11.37
SAA 1.073 2.637 3.709 4.745 5.340 7.067
SAS 2.378 5.594 7.379 9.543 10.97 12.26
SSA 0.3599 1.507 1.734 2.810 3.802 4.807
SSS 3.360 6.542 7.179 8.404 9.739 10.85
0.2 AAA 0.9636 3.115 5.874 7.001 8.870 9.439
AAS 3.876 5.264 7.529 9.266 11.35 11.87
ASA 1.730 3.617 4.561 6.002 7.705 9.103
ASS 5.733 7.177 7.957 8.872 10.09 11.36
SAA 1.952 4.435 6.001 7.378 8.133 10.32
SAS 2.378 5.593 7.376 9.535 10.96 12.22
SSA 0.6987 2.719 3.074 4.714 6.230 7.875
SSS 3.360 6.531 7.172 8.386 9.729 10.80
0.3 AAA 1.331 4.019 7.119 8.182 10.20 10.63
AAS 3.875 5.262 7.521 9.257 11.33 11.84
ASA 2.358 4.633 5.687 7.245 9.056 10.41
ASS 5.732 7.149 7.938 8.844 10.03 11.34
SAA 2.610 5.536 7.170 8.712 9.309 11.54
SAS 2.377 5.590 7.371 9.518 10.95 12.11
SSA 1.003 3.596 3.992 5.852 7.389 8.793
SSS 3.358 6.509 7.160 8.352 9.702 10.69
9
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Fig. 2. The first four SSA modes and the first three SSS modes of fixed generalized super elliptical plates with aspect ratio a/b = 1 and
powers n, = 1 and n, = 3 ((—6—) SSA-1, (==—) SSA-2, (—A-) SSA-3, (—e—) SSA-4, (~¢-) SSS-1, («-3~) SSS-2 and (--A-) SSS-3).
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Fig. 3. The first four ASA modes and the first three ASS modes of fixed generalized super elliptical plates with aspect ratio a/b = 1 and
powers n, = 1 and n, = 3 ((——) ASA-1, (=3—) ASA-2, (—A-) ASA-3, (—&—) ASA-4, (~4~) ASS-1, («&d-) ASS-2 and (--A-) ASS-3).

Fig. 4. The first four SAA modes and the first three SAS modes of fixed generalized super elliptical plates with aspect ratio a/b = 1 and
powers n, = 1 and n, = 3 ((—-) SAA-1, (==—) SAA-2, (&) SAA-3, (—&—) SAA-4, (~6~) SAS-1, («f3~) SAS-2 and (-A-) SAS-3).
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Fig. 5. The first four AAA modes and the first three AAS modes of fixed generalized super elliptical plates with aspect ratio a/b =1
and powers n, = 1 and n, = 3 ((—-) AAA-1, (==—) AAA-2, (—A-) AAA-3, (—e—) AAA-4, (~¢~) AAS-1, («i3~) AAS-2 and (~A-)
AAS-3).

5. Concluding remarks

In this paper, the 3-D vibration of generalized supper elliptical plates has been investigated by the
Chebyshev—-Ritz method. The analysis is based on the exact, small strain and linear elasticity theory.
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The product of a triplicate Chebyshev polynomial series and a characteristic boundary function is taken as
the admissible function for each displacement component. The triplicate Chebyshev polynomial series is
defined in a rectangular hexahedron enclosing the plate under consideration while the characteristic
boundary function ensures the exact satisfaction of the geometric boundary conditions of the plate.
Convergence and comparison studies demonstrate the accuracy and validity of the present method.
The effect of various geometric parameters on frequency parameters has also been studied.
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