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Abstract

The three-dimensional free vibration of generalized super elliptical plates is analysed, based on the exact, small-strain

and linear elasticity theory. The Ritz method is applied to derive the frequency equation. The triplicate Chebyshev

polynomial series form the backbones of the admissible functions, as modified by a characteristic boundary function to

ensure the satisfaction of geometric boundary conditions of the plate. Utilizing the symmetry of the plate under

consideration, eight distinct vibration modes can be classified and individually solved while maintaining the same level

of accuracy. The accuracy of the present method has been examined by the convergence and comparison studies. The

effect of geometric parameters on vibration behaviour of the generalized super elliptical plates with free and fixed

perimeters have been studied for different powers, thickness ratios and aspect ratios.

� 2004 Published by Elsevier Ltd.
1. Introduction

The analysis of vibration characteristics of plates with various shapes has attracted the interests from a

lot of researchers because of their applications in various branches of engineering. In the Cartesian

coordinate system, the perimeter F of a generalized super elliptical plate, as shown in Fig. 1, is defined by
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� 1 ¼ 0; nx; ny ¼ 1; 2; 3; . . . ð1Þ
where a and b are the maximum dimensions of the plate in the x and y directions, respectively. The above
equation can describe a type of common plates by giving different values to the integer powers nx and ny ,
and the aspect ratio a=b. For example, setting nx ¼ ny ¼ 1 and a=b ¼ 1 gives a circular plate, while pre-
scribing nx ¼ ny ¼ 1 and a=b 6¼ 1 represents an elliptical plate. It is obvious that the higher values of nx
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Fig. 1. Geometry and dimensions of a generalized super elliptical plate.
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and/or ny correspond to a smaller corner radius. Therefore, the perimeter of the plate approaches a rect-
angular one with increase in the powers. In a sense, the present work on super elliptical plates provides a

unified treatment for a wide range of plates ranging from circular plates, elliptical plates to rectangular

plates by setting suitable indices.
Some investigations have been carried out on vibration of super elliptical plates due to their importance

in engineering applications. Sato (1971) used the analytical method and Narita (1985) used the Ritz method

to study isotropic and orthotropic elliptical plates based on the classical thin plate theory, respectively.

Wang et al. (1994) studied the vibration and buckling of super elliptical thin plates, while DeCapua and Sun

(1972) studied the eigenfrequencies of orthotropic super elliptical thin plates using the 2-D simple algebraic

polynomials as the admissible functions in the Ritz method. Irie et al. (1983) combined the conformal

mapping technique with Ritz method to study the vibration of square membrane and thin plate with

rounded corners. Rajalingham et al. (1993) studied the free vibration of elliptical thin plates by using the
orthogonal polynomials and trigonometric functions as the admissible functions in a modified polar

coordinate system. Liew et al. (1998b) and Chen et al. (1999) studied the free vibration of isotropic and

symmetric laminated thick super elliptical plates by using the higher-order shear deformation plate theory

in the Ritz method, respectively. Moreover, the free vibration of isotropic and laminated, thin and thick

perforated plates have been studied by Lim and Liew (1995), Lim et al. (1998) and Chen et al. (2000) using

the classical thin plate theory and the higher-order shear deformation plate theory, respectively.

In the recent two decades, the 3-D vibration analysis of plates based on the exact, small strain and linear

elasticity theory has received increasing attention as such methods are applicable not only to thin plates, but
also to moderately thick and thick plates. Among various numerical methods, the Ritz method shows some

advantages in both the accuracy and the convenience. Simple algebraic polynomials (Leissa and Zhang,

1983; So and Leissa, 1998), generated orthogonal polynomials (Liew et al., 1993; Liew and Yang, 2000) and

Chebyshev polynomials (Zhou et al., 2002; Zhou et al., 2003) were taken as the admissible functions and

have been demonstrated effective. Liew et al. (1995a) studied the 3-D vibration of elliptical bars and re-

cently, Liew and Feng (2001) studied the 3-D vibration of perforated super elliptical plates using the 1-D

and 2-D generated orthogonal polynomials as the admissible functions. Moreover, the 3-D vibration of

plates with various shapes have been analysed by the Ritz method (Leissa and Jacob, 1986; Cheung and
Zhou, 2002; Zhou et al., 2003; Young and Dickinson, 1994, 1995; Liew et al., 1994, 1998a, 1995b).

It is obvious that Eq. (1) describes a more far-reaching type of plates than super elliptical plates. For the

case of nx ¼ ny , the generalized super elliptical plates degenerate into super elliptical plates which have been
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studied by some researchers (Liew et al., 1998b; Chen et al., 1999; Wang et al., 1994; DeCapua and Sun,

1972; Irie et al., 1983). In the present study, the 3-D free vibrations of generalized super elliptical plates are

considered. The triplicate Chebyshev polynomials multiplied by a characteristic boundary function for each

displacement component are taken as the admissible functions. Convergence and comparison studies
demonstrate the accuracy and the correctness of the present method. The effect of the geometric parameters

such as the thickness ratio, aspect ratio and powers on the frequency parameters has been investigated in

detail.
2. Formulation

Consider a generalized super elliptical plate as shown in Fig. 1 with a Cartesian coordinate system
x� y � z. The plate is made of isotropic material and has a uniform thickness h. The shape of the plate is
controlled by two positive integers nx and ny , and the aspect ratio a=b. It is obvious that no matter what
values nx and ny are assigned, the plate always stays within a rectangular hexahedral domain with the sides
a, b and h. For the case of a ¼ b, the hexahedral domain has a square planform.
Based on the exact, small strain, and 3-D linear elasticity theory, the elastic strain energy K and the

kinetic energy T of the plate can be written in the volume integral form as
K ¼ E
2ð1þ mÞ

Z a=2

�a=2

Z r

�r

Z h=2

�h=2

m
1� 2mK1

�
þ K2 þ

1

2
K3

�
dzdy dx ð2Þ

T ¼ q
2

Z a=2

�a=2

Z r

�r

Z h=2

�h=2

ou
ot

� �2"
þ ov

ot

� �2
þ ow

ot

� �2#
dzdy dx ð3Þ
where r ¼ ðb=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2x=aÞnxny

p
and
K1 ¼ ðexx þ eyy þ ezzÞ2; K2 ¼ e2xx þ e2yy þ e2zz; K3 ¼ e2xy þ e2xz þ e2yz ð4Þ
E is the Young’s modulus, m is the Poisson’s ratio and q is the mass density per unit volume. The strain
components eijði; j ¼ x; y; zÞ in the Cartesian coordinates for small deformation are given as
exx ¼
ou
ox

; eyy ¼
ov
oy

; ezz ¼
ow
oz

exy ¼
ou
oy

þ ov
ox

; exz ¼
ou
oz

þ ow
ox

; eyz ¼
ov
oz

þ ow
oy

ð5Þ
In the free vibration of the plate, its periodic displacement components can be expressed in terms of the

time t as
uðx; y; z; tÞ ¼ Uðx; y; zÞeixt; vðx; y; z; tÞ ¼ V ðx; y; zÞeixt

wðx; y; z; tÞ ¼ W ðx; y; zÞeixt
ð6Þ
where Uðx; y; zÞ, V ðx; y; zÞ and W ðx; y; zÞ are the displacement amplitude functions, x denotes the natural

frequency of the plate and i ¼
ffiffiffiffiffiffiffi
�1

p
.

For simplicity and convenience in mathematical formulation, the following non-dimensional parameters

are introduced
n ¼ 2x=a; g ¼ 2y=b; f ¼ 2z=h ð7Þ



4700 D. Zhou et al. / International Journal of Solids and Structures 41 (2004) 4697–4712
The maximum energy functional P of the plate is defined as
P ¼ Kmax � Tmax ð8Þ
where
Vmax ¼
Eh

4kð1þ mÞ

Z 1

�1

Z �r

��r

Z 1

�1

m
1� 2mK1

�
þ K2 þ

1

2
K3

�
dfdgdn

Tmax ¼
q
16
abhx2

Z 1

�1

Z �r

��r

Z 1

�1
ðU 2 þ V 2 þ W 2Þdfdgdn

ð9Þ
in which
�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nnxny

p
;

K1 ¼ ð�enn þ �egg þ �effÞ2; K2 ¼ �e2nn þ �e2gg þ �e2ff; K3 ¼ �e2ng þ �e2nf þ �e2gf;
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oU
on
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;

k ¼ a=b; c ¼ h=b

ð10Þ
In the present analysis, each of the displacement amplitude functions Uðn; g; fÞ, V ðn; g; fÞ and W ðn; g; fÞ is
taken, respectively, in the form of triplicate series of Chebyshev polynomials multiplied by a characteristic

boundary function which ensures that the displacement component satisfies the essential geometric

boundary conditions of the plate, i.e.
Uðn; g; fÞ ¼ Fuðn; gÞ
X1
i¼1

X1
j¼1

X1
k¼1
AijkPiðnÞPjðgÞPkðfÞ

V ðn; g; fÞ ¼ Fvðn; gÞ
X1
l¼1

X1
m¼1

X1
n¼1
BlmnPlðnÞPmðgÞPnðfÞ

W ðn; g; fÞ ¼ Fwðn; gÞ
X1
p¼1

X1
q¼1

X1
r¼1
CpqrPpðnÞPqðgÞPrðfÞ

ð11Þ
where Aijk, Blmn and Cpqr are the unknown coefficients. The 1-D sth Chebyshev polynomial PsðvÞ
ðs ¼ 1; 2; 3; . . . ; v ¼ n; g; fÞ can be written in terms of cosine functions as follows:
PsðvÞ ¼ cos½ðs� 1Þ arccosðvÞ
; ðs ¼ 1; 2; 3; . . .Þ ð12Þ
Note that Fuðn; gÞ, Fvðn; gÞ and Fwðn; gÞ are the characteristic boundary functions, respectively, corre-
sponding to the displacements u, v and w.
It is obvious that the three duplicate Chebyshev polynomial series PiðnÞPjðgÞPkðfÞ (i; j; k;¼ 1; 2; 3; . . .)

constitute a complete and orthogonal set in the cubic domain with two corner-point coordinates ð1; 1; 1Þ
and ð�1;�1;�1Þ. Substituting Eq. (11) into Eq. (9) and minimizing the functional P with respect to the

coefficients of the admissible functions, i.e.
oP
oAijk

¼ 0; oP
oBlmn

¼ 0; oP
oCpqr

¼ 0 ði; j; k; l;m; n; p; q; r ¼ 1; 2; 3; . . .Þ ð13Þ
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leads to the following governing eigenvalue equation in matrix form:
½Kuu
 ½Kuv
 ½Kuw

½Kuv
T ½Kvv
 ½Kvw

½Kuw
T ½Kvw
T ½Kww


2
64

3
75

0
B@ � X2

½Muu
 0 0

0 ½Mvv
 0

0 0 ½Mww


2
64

3
75
1
CA

fAg
fBg
fCg

8><
>:

9>=
>; ¼

f0g
f0g
f0g

8><
>:

9>=
>; ð14Þ
in which X ¼ xa
ffiffiffiffiffiffiffiffiffi
q=E

p
, ½Kij
 and ½Mii
ði; j ¼ u; v;wÞ are the stiffness sub-matrices and the diagonal mass sub-

matrices, respectively. The column vectors fAg, fBg and fCg contain unknown coefficients expressed in the
following forms
fAg ¼

A111
A112

..

.

A11K
A121

..

.

A12K

..

.

A1JK

..

.

AIJK

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

; fBg ¼
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B112

..

.
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..

.
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..

.
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..

.

ALMN

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
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; fCg ¼

C111
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..

.
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..

.

C12R

..

.

C1QR

..

.

CPQR

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

ð15Þ
where I , J , K, L, M , N , P , Q and R are the truncation orders. The elements of the stiffness sub-matrices ½Kij

and mass sub-matrices ½Mii
 (i; j ¼ u; v;w) are given by
½Kuu
 ¼
1� m
1� 2mD

1;1;0;0
uiju�i�j H

0;0

uku�k þ
k2

2
D0;0;1;1uiju�i�j H

0;0

uku�k

�
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uku�k

�
;
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�
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2
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�
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k
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�
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½Kww
 ¼ k2
1� m

c2ð1� 2mÞD
0;0;0;0
wpqw�p�qH

1;1
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�
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½Muu
 ¼ ð1þ mÞD0;0;0;0uiju�i�j H
0;0

uku�k=4;
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 ¼ ð1þ mÞD0;0vlmv�l�mH
0;0
vnv�n=4;

½Mww
 ¼ ð1þ mÞD0;0;0;0wpqw�p�qH
0;0
wrw�r=4; i; j; k; l;m; n; p; q; r;�i;�j; �k;�l; �m; �n; �p; �q;�r ¼ 1; 2; 3; . . .

ð16Þ



Table 1

The characteristic boundary functions (CBF)

CBF Fixed Free S-Sa

Fuðn; gÞ F ðn; gÞ 1 1

Fvðn; gÞ F ðn; gÞ 1 1

Fwðn; gÞ F ðn; gÞ 1 F ðn; gÞ
aNote: S-S means soft simply-supported boundary conditions.

Table 2

The Chebyshev polynomials for different mode categories

Geometric

symmetry

Symmetric modes Antisymmetric modes

U V W U V W

x direction i ¼ 2; 4; 6; . . . l ¼ 1; 3; 5; . . . p ¼ 1; 3; 5; . . . i ¼ 1; 3; 5; . . . l ¼ 2; 4; 6; . . . p ¼ 2; 4; 6; . . .
y direction j ¼ 1; 3; 5; . . . m ¼ 2; 4; 6; . . . q ¼ 1; 3; 5; . . . j ¼ 2; 4; 6; . . . m ¼ 1; 3; 5; . . . q ¼ 2; 4; 6; . . .
z direction k ¼ 1; 3; 5; . . . n ¼ 1; 3; 5; . . . r ¼ 2; 4; 6; . . . k ¼ 2; 4; 6; . . . n ¼ 2; 4; 6; . . . r ¼ 1; 3; 5; . . .
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in which
Ds;�s;s;�s
d;r;h;�d;�r;�h

¼
Z 1

�1

Z 1

�1

ds

dns
ds

dgs
fdrhðn; gÞ

� �
d�s

dn�s
d�s

dg�s
f�d�r�hðn; gÞ

" #( )
dndg;

Hs;�s
d1�d�1

¼
Z 1

�1

dsP1ðfÞ
dfs

d�sP�1ðfÞ
df�s

( )
df;

fdrhðn; gÞ ¼ Fdðn; gÞPrðnÞPhðgÞ;

s;�s; s;�s ¼ 0; 1; d; �d ¼ u; v;w; r; �r ¼ i; l; p;�i;�l; �p;

h; �h ¼ j;m; q;�j; �m; �q; 1;�1 ¼ k; n; r; �k; �n;�r

ð17Þ
For the common boundary conditions, the characteristic boundary functions Fuðn; gÞ, Fvðn; gÞ and Fwðn; gÞ
are given in Table 1.

Considering the symmetry of the plates, eight distinct categories of vibration modes can be classified and

each mode can be individually solved. This will greatly reduce the computational cost while maintaining the

same level of accuracy. Using ‘‘A’’ to denote antisymmetric modes and ‘‘S’’ for symmetric modes, the eight

categories can be written as AAA, AAS, ASA, ASS, SAA, SAS, SSA and SSS, where the three consecutive

letters stand for the vibration categories in the x, y and z directions, respectively. The Chebyshev polynomial
series in different directions are given in Table 2.

A non-trivial solution is obtained by setting the determinant of the coefficient matrix of Eq. (14) to zero.

The roots of the determinant are the squares of the eigenvalues or non-dimensional eigenfrequencies. Ei-

genfunctions, i.e. mode shapes, are determined by back-substitution of the eigenvalues, one-by-one, in the

usual manner. All computations are performed in double precision (16 significant figures) on a micro-

computer. The integrals in Eq. (17) are numerically evaluated by the piecewise Gaussian quadrature with

24 points.
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3. Convergence and comparison studies

In the Ritz method, it is very important to check its convergence and numerical robustness. The upper

bound estimates of frequencies could be theoretically improved by continuously increasing the number of
terms of admissible functions. However, a limit to the number of terms used in the computation always
Table 3

Convergence of the first eight frequency parameters of a fixed generalized super elliptical plate with powers nx ¼ 1, ny ¼ 2 and thickness
ratio h=b ¼ 0:01
I 
 J 
 K X1 X2 X3 X4 X5 X6 X7 X8

AAA mode

6 · 6 · 2 0.3651 0.7651 0.8727 1.249 1.500 1.618 1.853 2.207

7 · 7 · 2 0.3648 0.7645 0.8720 1.247 1.493 1.600 1.845 2.169

8 · 8 · 2 0.3647 0.7640 0.8716 1.247 1.492 1.598 1.844 2.162

8 · 8 · 3 0.3647 0.7640 0.8716 1.247 1.492 1.598 1.844 2.162

AAS mode

6 · 6 · 1 4.549 5.921 8.256 8.360 9.532 11.66 11.93 12.25

7 · 7 · 1 4.549 5.920 8.256 8.360 9.529 11.66 11.92 12.24

8 · 8 · 1 4.549 5.918 8.256 8.360 9.527 11.66 11.92 12.24

8 · 8 · 2 4.549 5.918 8.256 8.360 9.527 11.66 11.92 12.24

ASA mode

6 · 6 · 2 0.2335 0.5615 0.6631 0.9875 1.202 1.325 1.543 1.814

7 · 7 · 2 0.2333 0.5612 0.6626 0.9861 1.193 1.320 1.536 1.796

8 · 8 · 2 0.2332 0.5608 0.6622 0.9856 1.193 1.319 1.535 1.792

8 · 8 · 3 0.2332 0.5608 0.6622 0.9856 1.193 1.319 1.535 1.792

ASS mode

6 · 6 · 1 3.893 6.389 7.942 9.735 10.29 10.54 11.19 13.01

7 · 7 · 1 3.892 6.389 7.939 9.733 10.29 10.54 11.19 13.01

8 · 8 · 1 3.891 6.388 7.938 9.733 10.29 10.54 11.18 13.01

8 · 8 · 2 3.891 6.388 7.938 9.733 10.29 10.54 11.18 13.01

SAA mode

6 · 6 · 2 0.2369 0.5468 0.6810 0.9955 1.153 1.378 1.537 1.862

7 · 7 · 2 0.2368 0.5463 0.6803 0.9943 1.151 1.359 1.532 1.830

8 · 8 · 2 0.2366 0.5460 0.6799 0.9937 1.150 1.357 1.531 1.826

8 · 8 · 3 0.2366 0.5460 0.6799 0.9937 1.150 1.357 1.531 1.826

SAS mode

6 · 6 · 1 3.925 6.342 7.859 9.758 10.21 10.72 11.13 13.20

7 · 7 · 1 3.924 6.342 7.857 9.757 10.21 10.72 11.13 13.19

8 · 8 · 1 3.923 6.342 7.855 9.756 10.21 10.72 11.12 13.19

8 · 8 · 2 3.923 6.342 7.855 9.756 10.21 10.72 11.12 13.19

SSA mode

6 · 6 · 2 0.1139 0.4044 0.4361 0.7534 0.9616 1.000 1.254 1.473

7 · 7 · 2 0.1138 0.4040 0.4358 0.7527 0.9591 0.9920 1.250 1.462

8 · 8 · 2 0.1137 0.4037 0.4355 0.7523 0.9585 0.9914 1.249 1.460

8 · 8 · 3 0.1137 0.4037 0.4355 0.7523 0.9585 0.9914 1.249 1.460

SSS mode

6 · 6 · 1 6.245 7.603 8.020 9.569 11.36 11.90 12.47 13.74

7 · 7 · 1 6.242 7.600 8.019 9.566 11.36 11.90 12.46 13.74

8 · 8 · 1 6.241 7.598 8.019 9.564 11.36 11.89 12.46 13.73

8 · 8 · 2 6.240 7.598 8.019 9.563 11.36 11.89 12.45 13.73



Table 4

Convergence of the first eight frequency parameters of a fixed generalized super elliptical plate with powers nx ¼ 1, ny ¼ 2 and thickness
ratio h=b ¼ 0:2
I 
 J 
 K X1 X2 X3 X4 X5 X6 X7 X8

AAA mode

5· 5 · 3 4.181 6.999 7.664 9.713 10.75 10.90 11.26 11.75

6· 6 · 3 4.181 6.998 7.661 9.704 10.74 10.84 11.17 11.69

7· 7 · 3 4.180 6.997 7.660 9.703 10.74 10.84 11.17 11.68

7· 7 · 4 4.179 6.995 7.658 9.700 10.74 10.84 11.16 11.68

AAS mode

5· 5 · 2 4.549 5.942 8.253 8.351 9.534 11.54 11.77 12.21

6· 6 · 2 4.549 5.941 8.252 8.350 9.533 11.53 11.75 12.17

7· 7 · 2 4.549 5.941 8.252 8.350 9.532 11.53 11.75 12.17

7· 7 · 3 4.549 5.938 8.252 8.349 9.528 11.53 11.74 12.17

ASA mode

5· 5 · 3 2.987 5.655 6.336 8.329 9.445 9.985 10.63 11.13

6· 6 · 3 2.986 5.654 6.335 8.323 9.388 9.942 10.62 11.08

7· 7 · 3 2.986 5.654 6.334 8.323 9.383 9.940 10.62 11.08

7· 7 · 4 2.985 5.652 6.332 8.321 9.381 9.938 10.62 11.08

ASS mode

5· 5 · 2 3.913 6.387 7.952 9.675 10.20 10.41 11.13 12.96

6· 6 · 2 3.913 6.387 7.951 9.673 10.18 10.38 11.12 12.91

7· 7 · 2 3.913 6.387 7.951 9.673 10.18 10.38 11.12 12.90

7· 7 · 3 3.911 6.387 7.948 9.671 10.18 10.38 11.11 12.90

SAA mode

5· 5 · 3 3.021 5.567 6.446 8.359 9.205 10.23 10.70 11.10

6· 6 · 3 3.020 5.567 6.442 8.355 9.192 10.11 10.66 11.07

7· 7 · 3 3.020 5.566 6.442 8.355 9.191 10.10 10.66 11.07

7· 7 · 4 3.019 5.565 6.440 8.353 9.189 10.10 10.66 11.06

SAS mode

5· 5 · 2 3.946 6.340 7.870 9.710 10.18 10.45 11.09 13.12

6· 6 · 2 3.945 6.340 7.869 9.707 10.17 10.45 11.08 13.05

7· 7 · 2 3.945 6.340 7.869 9.706 10.17 10.45 11.08 13.04

7· 7 · 3 3.944 6.340 7.865 9.705 10.17 10.44 11.07 13.03

SSA mode

5· 5 · 3 1.712 4.445 4.746 6.946 8.118 8.352 9.734 10.79

6· 6 · 3 1.711 4.444 4.744 6.944 8.103 8.299 9.714 10.72

7· 7 · 3 1.711 4.444 4.744 6.944 8.103 8.296 9.713 10.71

7· 7 · 4 1.711 4.443 4.743 6.942 8.100 8.293 9.710 10.71

SSS mode

5· 5 · 2 6.263 7.539 8.004 9.565 11.33 11.76 12.40 12.85

6· 6 · 2 6.263 7.538 8.003 9.563 11.32 11.73 12.39 12.83

7· 7 · 2 6.262 7.538 8.003 9.562 11.32 11.72 12.39 12.82

7· 7 · 3 6.259 7.534 8.002 9.558 11.31 11.72 12.38 12.81
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exists because of the limited numerical accuracy of computers, which greatly depends on the choice of
global admissible functions. In the 3-D analysis, especially when the triplicate series has to be used,

numerical instability may occur before the required accuracy of results is reached.

A generalized super elliptical plate with powers nx ¼ 1 and ny ¼ 2 enclosed within a square planform
(a=b ¼ 1) is taken as an example to show the convergence of the present method. The plate has a fixed
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perimeter and two different thickness ratios (h=b ¼ 0:01 and h=b ¼ 0:2) are considered. It is obvious that
h=b ¼ 0:01 corresponds to a thin plate while h=b ¼ 0:2 corresponds to a moderately thick plate. Tables 3
and 4 demonstrate the convergence of the first eight frequency parameters of each mode category for the

two thickness ratios, respectively. For the plate with thickness ratio h=b ¼ 0:01, 6–8 terms in the x and y
directions are examined. However, only 2–3 terms in the z direction for the antisymmetric vibration and 1–2
terms for the symmetric vibration are examined. For the plate with thickness ratio h=b ¼ 0:2, 5–7 terms in
the x and y directions are examined. However, only 3–4 terms in the z direction for the antisymmetric
vibration and 2–3 terms for the symmetric vibration are examined. It is seen that with increasing terms of

Chebyshev polynomials used, the frequency parameters monotonically decrease and excellent convergence
Table 5

Comparison of the first two frequency parameters X ¼ xa
ffiffiffiffiffiffiffiffiffi
q=E

p
of fixed super elliptical plates with different powers and thickness

ratios

h=b nx ¼ ny Mode sequence number

AA-1 AA-2 AS(SA)-1 AS(SA)-2 SS-1 SS-2

0.01 1 0.4216 0.8400 0.2574 0.6163 0.1238 0.4220

(0.4207) (0.8378) (0.2568) (0.6148) (0.1235) (0.4208)

2 0.3407 0.7392 0.2261 0.5214 0.1102 0.3990

(0.3401) (0.7379) (0.2258) (0.5202) (0.1100) (0.3981)

4 0.3282 0.7304 0.2223 0.5007 0.1091 0.3977

(0.3277) (0.7289) (0.2219) (0.4996) (0.1088) (0.3969)

10 0.3271 0.7298 0.2202 0.4982 0.1090 0.3976

(0.3265) (0.7285) (0.2216) (0.4973) (0.1088) (0.3968)

1 0.3271 0.7300 0.2221 0.4982 0.1090 0.3978

(0.3265) (0.7284) (0.2216) (0.4972) (0.1088) (0.3968)

[0.3271] [0.7300] [0.2221] [0.4982] [0.1090] [0.3977]

0.1 1 3.311 4.753* 2.173 4.119* 1.128 3.312

(3.294) (4.753) (2.162) (4.103) (1.122) (3.295)

2 2.773 4.473* 1.934 3.821* 1.007 3.146

(2.759) (4.473) (1.925) (3.808) (1.001) (3.132)

4 2.671 4.443* 1.898 3.754* 0.9927 3.134

(2.659) (4.442) (1.889) (3.742) (0.9876) (3.120)

10 2.657 4.441* 1.894 3.740* 0.9911 3.133

(2.644) (4.440) (1.884) (3.728) (0.9861) (3.118)

1 2.657 4.441* 1.894 3.739* 0.9913 3.134

(2.645) (4.440) (1.885) (3.727) (0.9864) (3.120)

[2.659] [4.441] [1.895] [3.740] [0.9920] [3.135]

0.2 1 4.599 4.753* 3.212 4.129* 1.839 4.599

(4.616) (4.753) (3.212) (4.103) (1.830) (4.616)

2 3.982 4.474* 2.910 3.830* 1.658 4.392

(3.986) (4.473) (2.909) (3.808) (1.651) (4.412)

4 3.854 4.444* 2.857 3.748* 1.631 4.374

(3.859) (4.442) (2.858) (3.742) (1.625) (4.470)

10 3.834 4.442* 2.850 3.748* 1.628 4.434

(3.839) (4.440) (2.850) (3.728) (1.622) (4.393)

1 3.833 4.442* 2.850 3.747* 1.628 4.374

(3.840) (4.440) (2.851) (3.727) (1.622) (4.395)

[3.834] [4.442] [2.851] [3.747] [1.628] [4.375]

Notes: Results in parentheses are from Liew et al. (1998b) using the higher-order shear deformation plate theory. Results in square

brackets are from Liew et al. (1993) using the exact 3-D elasticity theory. The asterisk denotes symmetric modes in the thickness

direction.



Table 6

Comparison of the first two frequency parameters X ¼ xa
ffiffiffiffiffiffiffiffiffi
q=E

p
of free super elliptical plates with different powers and thickness ratios

h=b nx ¼ ny Mode sequence number

AA-1 AA-2 AS(SA)-1 AS(SA)-2 SS-1 SS-2

0.01 1 0.06479 0.2635 0.1502 0.2474 0.06478 0.1089

(0.06477) (0.2634) (0.1502) (0.2473) (0.06476) (0.1089)

2 0.04877 0.2209 0.1226 0.2060 0.06029 0.08758

(0.04876) (0.2209) (0.1226) (0.2060) (0.06027) (0.08758)

4 0.04324 0.2107 0.1112 0.1916 0.05940 0.07829

(0.04322) (0.2106) (0.1112) (0.1915) (0.05940) (0.07827)

10 0.04115 0.2090 0.1063 0.1861 0.05928 0.07441

(0.04113) (0.2089) (0.1063) (0.1861) (0.05928) (0.07439)

1 0.04062 0.2088 0.1050 0.1846 0.05928 0.07341

(0.04063) (0.2089) (0.1050) (0.1847) (0.05928) (0.07341)

0.1 1 0.6196 2.286 1.372 2.186 0.6196 1.031

(0.6193) (2.281) (1.370) (2.178) (0.6192) (1.030)

2 0.4641 1.940 1.129 1.857 0.5827 0.8378

(0.4640) (1.937) (1.127) (1.852) (0.5823) (0.8369)

4 0.4101 1.855 1.024 1.739 0.5749 0.7521

(0.4100) (1.851) (1.023) (1.734) (0.5746) (0.7513)

10 0.3899 1.840 0.9791 1.692 0.5737 0.7159

(0.3898) (1.837) (0.9783) (1.687) (0.5734) (0.7151)

1 0.3850 1.839 0.9670 1.679 0.5736 0.7064

(0.3850) (1.836) (0.9663) (1.675) (0.5733) (0.7059)

[0.3851] [1.839] [0.9673] [1.679] [0.5736] [0.7065]

0.2 1 1.126 2.909* 2.307 3.448 1.126 1.816

(1.125) (2.909) (2.301) (3.392) (1.124) (1.810)

{1.126} {2.909} {2.307} {3.448} {1.126} {1.816}

2 0.8500 2.589* 1.932 3.008 1.072 1.504

(0.8497) (2.589) (1.927) (2.951) (1.070) (1.500)

4 0.7534 2.481* 1.765 2.843 1.058 1.363

(0.7531) (2.481) (1.762) (2.716) (1.057) (1.359)

10 0.7173 2.441* 1.693 2.775 1.056 1.302

(0.7171) (2.441) (1.690) (2.616) (1.054) (1.299)

1 0.7087 2.433* 1.673 2.589 1.055 1.286

(0.7087) (2.433) (1.671) (2.591) (1.053) (1.283)

[0.7087] [2.433] [1.673] [2.589] [1.055] [1.286]

Notes: Results in parentheses are from Liew et al. (1998b) using the higher-order shear deformation plate theory. Results in square

brackets are from Liew et al. (1993) using the exact 3-D elasticity theory. Results in braces are from Zhou et al. (2003) using the exact

3-D elasticity theory. The asterisk denotes symmetric modes in the thickness direction.
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has been achieved for all cases. It is shown that for a given accuracy, more terms of Chebyshev polynomials
in the x and y directions than those in the z direction are needed, especially for thin plates. However, with
increasing plate thickness, more terms of Chebyshev polynomials in the z direction should be used, with a
decrease of terms needed in the x and y directions.
Results of the comparison studies are given in Tables 5 and 6 for super elliptical plates enclosed within

square planforms with free and fixed boundaries, respectively. Three different thickness ratios (h=b ¼ 0:01,
0.1, 0.3) and five groups of powers (nx ¼ ny ¼ 1; 2; 4; 10;1) have been examined. The solutions given by
Liew et al. (1998b) from the higher-order shear deformation theory and the 3-D solutions for square plates

given by Liew et al. (1993) and the 3-D solutions for circular plates given by Zhou et al. (2003) are used for
comparison. It is seen that very good agreement has been observed for all cases and the maximum error

between the present 3-D solutions and the 2-D higher-order theory is lower than 1%. From the tables, one
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can find that in most cases, the present 3-D solutions are higher than the solutions of the 2-D higher-order

plate theory.
4. Parametric study

In this section, the effects of geometric parameters such as the thickness ratio and the aspect ratio on

the frequency parameters of plates are investigated. In Tables 7–9, the first six frequency parameters of

each mode category are given for free generalized super elliptical plates with powers nx ¼ 1 and ny ¼ 2.
Three different aspect ratios (a=b ¼ 0:5, 1.0, 2.0) and four different thickness ratios (h=b ¼ 0:01, 0.1, 0.2,
0.3) have been considered. It is seen that in all cases, the lowest frequency parameters are always

provided by the SSA mode. In Figs. 2–5, the first four antisymmetric modes and the first three sym-
metric modes in the thickness direction for different mode categories of fixed generalized super elliptical
Table 7

The first six frequency parameters X ¼ xa
ffiffiffiffiffiffiffiffiffi
q=E

p
of each mode categories for free generalized super elliptical plates with powers nx ¼ 1,

ny ¼ 2 and aspect ratio a=b ¼ 0:5
h=b Modes X1 X2 X3 X4 X5 X6

0.01 AAA 0.05298 0.1970 0.4181 0.4866 0.6994 0.7775

AAS 1.955 2.709 3.845 4.717 5.639 5.910

ASA 0.1158 0.2989 0.4006 0.5513 0.6116 0.8673

ASS 1.232 2.858 3.765 4.792 5.555 5.956

SAA 0.09900 0.2126 0.2966 0.4287 0.5732 0.7536

SAS 2.852 3.570 4.002 4.467 5.170 5.692

SSA 0.03800 0.1508 0.1882 0.3075 0.4256 0.5776

SSS 1.443 1.633 1.835 2.735 2.978 3.297

0.1 AAA 0.4808 1.622 3.017 3.395 4.452 4.781

AAS 1.954 2.708 3.842 4.713 5.632 5.904

ASA 1.011 2.304 2.945 3.733 4.041 5.196

ASS 1.232 2.858 3.762 4.786 5.548 5.936

SAA 0.8894 1.742 2.296 3.085 3.839 4.719

SAS 2.852 3.561 3.994 4.455 5.152 5.686

SSA 0.3643 1.310 1.572 2.362 3.059 3.880

SSS 1.706 3.222 3.526 4.171 4.884 5.628

0.2 AAA 0.8084 2.401 3.999 4.139 4.991 5.249

AAS 1.954 2.704 3.831 4.700 5.584 5.838

ASA 1.601 3.217 3.716 4.601 4.875 5.153

ASS 1.231 2.854 3.754 4.758 5.520 5.794

SAA 1.445 2.560 3.200 4.002 4.838 5.080

SAS 2.851 3.530 3.962 4.407 5.060 5.658

SSA 0.6595 2.041 2.349 3.262 4.084 4.809

SSS 1.704 3.194 3.512 4.126 4.856 5.411

0.3 AAA 0.9925 2.754 3.369 3.711 4.365 4.409

AAS 1.952 2.697 3.785 4.606 4.780 4.854

ASA 1.903 3.261 3.574 3.584 4.289 5.003

ASS 1.230 2.847 3.730 4.473 4.785 5.005

SAA 1.742 2.875 3.351 3.708 4.293 4.761

SAS 2.850 3.442 3.856 4.284 4.554 4.913

SSA 0.8959 2.416 2.697 3.473 4.103 4.512

SSS 1.702 3.126 3.478 3.968 4.554 4.785



Table 8

The first six frequency parameters X ¼ xa
ffiffiffiffiffiffiffiffiffi
q=E

p
of each mode categories for free generalized super elliptical plates with powers nx ¼ 1,

ny ¼ 2 and aspect ratio a=b ¼ 1:0
h=b Modes X1 X2 X3 X4 X5 X6

0.01 AAA 0.05426 0.2347 0.3516 0.5178 0.7570 0.8657

AAS 2.7010 5.412 5.547 5.982 7.867 8.490

ASA 0.1354 0.2161 0.3655 0.5587 0.6416 0.7102

ASS 3.177 4.258 6.415 6.734 7.181 8.133

SAA 0.1306 0.2253 0.3633 0.5344 0.6731 0.7011

SAS 3.102 4.210 6.572 6.866 7.263 7.980

SSA 0.06174 0.09594 0.2363 0.3938 0.4234 0.5223

SSS 2.821 4.043 4.383 5.565 7.812 8.619

0.1 AAA 0.5175 2.054 2.969 4.080 5.600 6.261

AAS 2.701 5.410 5.544 5.982 7.861 8.478

ASA 1.246 1.937 3.040 4.390 4.936 5.292

ASS 3.176 4.257 6.409 6.728 7.160 8.128

SAA 1.197 2.012 3.021 4.228 5.140 5.227

SAS 3.102 4.210 6.566 6.861 7.240 7.974

SSA 0.5951 0.9140 2.072 3.283 3.508 4.110

SSS 2.821 4.037 4.381 5.563 7.806 8.607

0.2 AAA 0.9455 3.260 4.448 5.807 7.458 8.073

AAS 2.701 5.401 5.536 5.982 9.838 8.427

ASA 2.121 3.116 4.551 6.125 6.751 7.153

ASS 3.173 4.256 6.385 6.703 7.087 8.111

SAA 2.035 3.217 4.522 5.943 6.949 7.102

SAS 3.099 4.209 6.545 6.841 7.154 7.954

SSA 1.091 1.628 3.294 4.837 5.135 5.839

SSS 2.821 4.016 4.372 5.559 7.787 8.554

0.3 AAA 1.272 3.897 5.022 6.406 6.642 7.472

AAS 2.700 5.380 5.519 5.980 7.762 8.200

ASA 2.672 3.707 5.263 6.518 6.615 7.182

ASS 3.169 4.255 6.323 6.619 6.932 8.058

SAA 2.565 3.804 5.213 6.395 6.668 7.201

SAS 3.095 4.207 6.484 6.789 6.950 7.902

SSA 2.103 3.958 5.375 5.740 6.503 7.675

SSS 2.821 3.978 4.354 5.551 7.728 8.294
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plates with aspect ratio a=b ¼ 1 and powers nx ¼ 1 and ny ¼ 3 have been plotted with respect to the
thickness ratio h=b. It is shown that the effect of thickness ratio on the frequency parameters of anti-
symmetric modes in the thickness direction is much larger than those of symmetric modes. In the range

of h=b from 0.01 to 0.3, the first three frequency parameters of the SSA modes and the first ones of the
ASA, SAA and AAA modes all monotonically increase with the thickness ratio. The first two frequency

parameters of the AAS, ASS and SAS modes and the first one of the SSS modes are basically insensitive

to the thickness ratio. In general, the frequency parameters of the antisymmetric modes in the thickness

direction increase with the plate thickness. However, the frequency parameters of the symmetric modes

in the thickness direction decrease when the plate thickness increases. Therefore, one can conclude that
for thin plates the frequencies of symmetric modes in the thickness direction are much higher than those

of antisymmetric modes and are all within the higher range of frequencies. However, with the increase in

plate thickness, the frequencies of symmetric modes in the thickness direction gradually decrease and fall

into the lower range of frequencies.



0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5

h/b

Ω

Fig. 2. The first four SSA modes and the first three SSS modes of fixed generalized super elliptical plates with aspect ratio a=b ¼ 1 and
powers nx ¼ 1 and ny ¼ 3 (( ) SSA-1, ( ) SSA-2, ( ) SSA-3, ( ) SSA-4, ( ) SSS-1, ( ) SSS-2 and ( ) SSS-3).

Table 9

The first six frequency parameters X ¼ xa
ffiffiffiffiffiffiffiffiffi
q=E

p
of each mode categories for free generalized super elliptical plates with powers nx ¼ 1,

ny ¼ 2 and aspect ratio a=b ¼ 2:0
h=b Modes X1 X2 X3 X4 X5 X6

0.01 AAA 0.05335 0.1902 0.4092 0.5086 0.7036 0.7706

AAS 3.877 5.266 7.534 9.272 11.36 11.89

ASA 0.09584 0.2222 0.2940 0.4170 0.5787 0.7211

ASS 5.733 7.196 7.970 8.892 10.13 11.38

SAA 0.1127 0.2889 0.4122 0.5495 0.6254 0.8673

SAS 2.378 5.595 7.380 9.545 10.97 12.28

SSA 0.03642 0.1575 0.1831 0.3076 0.4267 0.5540

SSS 3.361 6.546 7.181 8.409 9.743 10.87

0.1 AAA 0.5140 1.778 3.637 4.460 5.902 6.389

AAS 3.877 5.265 7.533 9.270 11.36 11.89

ASA 0.9303 2.079 2.705 3.717 4.984 6.069

ASS 5.733 7.192 7.966 8.887 10.12 11.37

SAA 1.073 2.637 3.709 4.745 5.340 7.067

SAS 2.378 5.594 7.379 9.543 10.97 12.26

SSA 0.3599 1.507 1.734 2.810 3.802 4.807

SSS 3.360 6.542 7.179 8.404 9.739 10.85

0.2 AAA 0.9636 3.115 5.874 7.001 8.870 9.439

AAS 3.876 5.264 7.529 9.266 11.35 11.87

ASA 1.730 3.617 4.561 6.002 7.705 9.103

ASS 5.733 7.177 7.957 8.872 10.09 11.36

SAA 1.952 4.435 6.001 7.378 8.133 10.32

SAS 2.378 5.593 7.376 9.535 10.96 12.22

SSA 0.6987 2.719 3.074 4.714 6.230 7.875

SSS 3.360 6.531 7.172 8.386 9.729 10.80

0.3 AAA 1.331 4.019 7.119 8.182 10.20 10.63

AAS 3.875 5.262 7.521 9.257 11.33 11.84

ASA 2.358 4.633 5.687 7.245 9.056 10.41

ASS 5.732 7.149 7.938 8.844 10.03 11.34

SAA 2.610 5.536 7.170 8.712 9.309 11.54

SAS 2.377 5.590 7.371 9.518 10.95 12.11

SSA 1.003 3.596 3.992 5.852 7.389 8.793

SSS 3.358 6.509 7.160 8.352 9.702 10.69
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Fig. 3. The first four ASA modes and the first three ASS modes of fixed generalized super elliptical plates with aspect ratio a=b ¼ 1 and
powers nx ¼ 1 and ny ¼ 3 (( ) ASA-1, ( ) ASA-2, ( ) ASA-3, ( ) ASA-4, ( ) ASS-1, ( ) ASS-2 and ( ) ASS-3).
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Fig. 4. The first four SAA modes and the first three SAS modes of fixed generalized super elliptical plates with aspect ratio a=b ¼ 1 and
powers nx ¼ 1 and ny ¼ 3 (( ) SAA-1, ( ) SAA-2, ( ) SAA-3, ( ) SAA-4, ( ) SAS-1, ( ) SAS-2 and ( ) SAS-3).
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Fig. 5. The first four AAA modes and the first three AAS modes of fixed generalized super elliptical plates with aspect ratio a=b ¼ 1
and powers nx ¼ 1 and ny ¼ 3 (( ) AAA-1, ( ) AAA-2, ( ) AAA-3, ( ) AAA-4, ( ) AAS-1, ( ) AAS-2 and ( )

AAS-3).
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5. Concluding remarks

In this paper, the 3-D vibration of generalized supper elliptical plates has been investigated by the

Chebyshev–Ritz method. The analysis is based on the exact, small strain and linear elasticity theory.
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The product of a triplicate Chebyshev polynomial series and a characteristic boundary function is taken as

the admissible function for each displacement component. The triplicate Chebyshev polynomial series is

defined in a rectangular hexahedron enclosing the plate under consideration while the characteristic

boundary function ensures the exact satisfaction of the geometric boundary conditions of the plate.
Convergence and comparison studies demonstrate the accuracy and validity of the present method.

The effect of various geometric parameters on frequency parameters has also been studied.
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